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HIGH DIMENSIONAL EXPANDERS

ALEXANDER LUBOTZKY

Abstract. Expander graphs have been, during the last five

decades, the subject of a most fruitful interaction between pure

mathematics and computer science, with influence and applica-

tions going both ways (cf. [Lub94], [HLW06], [Lub12] and the

references therein). In the last decade, a theory of “high dimen-

sional expanders” has begun to emerge. The goal of the current

paper is to describe some paths of this new area of study.

0. Introduction

Expander graphs are graphs which are, at the same time, sparse and

highly connected. These two seemingly contradicting properties are

what makes this theory non trivial and useful. The existence of such

graphs is not a completely trivial issue, but by now there are many

methods to show this: random methods, Kazhdan property (T ) from

representation theory of semisimple Lie groups, Ramanujan conjecture

(as proved by Deligne and Drinfeld) from the theory of automorphic

forms, the elementary Zig-Zag method and “interlacing polynomials”.

The definition of expander graphs can be expressed in several dif-

ferent equivalent ways (combinatorial, spectral gap etc. - see [Lub94],

[Kam17a]). When one comes to develop a high dimensional theory; i.e.

a theory of finite simplicial complexes of dimension d ≥ 2, which resem-

bles that of expander graphs in dimension d = 1, the generalizations

of the different properties are (usually) not equivalent. One is led to

notions like: coboundary expanders, cosystolic expanders, topological

expanders, geometric expanders, spectral expanders etc. each of which

has its importance and applications.

In §1, we recall very briefly several of the equivalent definitions of

expander graphs (ignoring completely the wealth of their applications).

These will serve as pointers to the various high dimensional generaliza-

tions.

In §2, we will start with the spectral definition. For this one needs

“discrete Hodge theory” as developed by Eckmann ([Ec44]). In this

sense the classical work of Garland [Gar73], proving Serre’s conjecture
1
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on the vanishing of the real cohomology groups of arithmetic lattices

of p-adic Lie groups, can be considered as the earliest work on high

dimensional expanders. His “local to global” method which treats the

finite quotients of the Bruhat-Tits building has been rediscovered in

recent years, with many applications, some of them will be described

in §2.
In §3, we turn our attention to Gromov’s topological and geometric

expanders (a.k.a. the topological and geometric overlapping proper-

ties). These quite intuitive directions were shown to be related to two

much more abstract definitions of coboundary and cosystolic (high di-

mensional) expanders. The last ones are defined using the language of

F2-cohomology. Here also a “local to global” method enables to pro-

duce topological expanders from finite quotients of Bruhat-Tits build-

ings of p-adic Lie groups.

Section 4 will deal with random simplicial complexes, while in §5 we

will briefly mention several applications and connections with computer

science.

1. A few words about expander graphs

Let X = (V,E) be a finite connected graph with sets of vertices V

and edges E. The Cheeger constant of X , denoted h(X), is:

h(X) = inf
A,B⊆V

|E(A,B)|
min(|A|, |B|)

where the infimum runs over all the possibilities of disjoint partitions

V = A∪B and E(A,B) is the set of edges connecting vertices in A to

vertices in B.

The graph X is εεε-expander if h(X) ≥ ε.

Let L2(V ) be the space of real functions on V with the inner product

〈f, g〉 = ∑
v∈V

deg(v)f(v)g(v) and L2
0(V ) the subspace of those which are

orthogonal to the constant functions. Similarly, L2(E) is the space of

functions on the edges with the standard inner product.

We fix an arbitrary orientation on the edges, and for e ∈ E we denote

its end points by e− and e+. Let d : L2(V ) → L2(E) be the map

(df)(e) = f(e+)− f(e−) for f ∈ L2(V ) and ∆ = d∗d : L2(V ) → L2(V )

when d∗ is the adjoint of d. The operator ∆ is called the Laplacian of

the graph. One can show (cf. [Lub94, Chap. 4]), that it is independent

of the chosen orientation. One can check that

∆ = I −M
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when M is the Markov operator on L2(V ), i.e.,

(Mf)(x) =
1

deg(x)

∑

{y|(x,y)∈E}
f(y).

The smallest eigenvalue of ∆ is 0 and it comes with multiplicity one

if (and only if) X is connected, which we will always assume. The

eigenfunctions with respect to 0 are the constant functions and as ∆ is

self adjoint, L2
0(V ) is invariant under ∆ and the spectral gap

λ1(X) = inf

{〈∆f, f〉
〈f, f〉

∣∣f ∈ L2
0(V )

}

is the smallest eigenvalue of ∆ acting on L2
0(V ).

The following result is a discrete analogue of the classical Cheeger

inequality (and its converse by Buser). This discrete version was proved

by Tanner, Alon and Milman (the reader is referred again to [Lub94,

Chap. 4] for a detailed history).

Theorem 1.1. If X is a finite connected k-regular graph, then:

h2(X)

2k2
≤ λ1(X) ≤ 2h(X)

k

We are usually interested in infinite families of k-regular graphs

(“sparse”). Such a family forms a family of expanders (i.e., h(X) ≥ ε

for the same ε > 0, for every X) if and only if λ1(X) ≥ ε′ > 0 for

the same ε′ for every X . I.e., Theorem 1.1 says that expanders can be

defined, equivalently, either by a combinatorial definition or using the

spectral gap definition. Expressing this using the adjacency operator

A rather than the Laplacian ∆: being expanders means that the sec-

ond largest eigenvalue λ(X) of A is bounded away from k, which is the

largest one.

Strictly speaking the notion of expanders requires spectral gap only

in one side of the spectrum of A, but in many applications (e.g. if one

wants to estimate the rate of convergence of the random walk on X

to the uniform distribution) one needs bounds on both sides. Recall

that −k is also an eigenvalue of A iff X is bi-partite. We can now

define: A k-regular connected graph is Ramanujan if all eigenvalues λ

of A are either λ = ±k or |λ| ≤ 2
√
k − 1. By the well-known Alon-

Boppana theorem, the bound 2
√
k − 1 is the best one can hope for

for an infinite family of k-regular graphs. Let us recall that for the

k-regular infinite tree T = Tk, the classical result of Kesten asserts

that the spectrum of the adjacency operator on L2(Tk) is exactly the

interval [−2
√
k − 1, 2

√
k − 1]. In a way Kesten’s result lies beyond
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the Alon-Boppana theorem and there are many generalizations of this

philosophy (cf. [GrZu99]).

Ramanujan graphs were presented by Lubotzky-Phillips-Sarnak

[LPS88], Margulis [Mar88], Morgenstern and recently by Marcus-

Spielman-Srivastava [MSS15].

There are several other ways to define expanders. Let us mention

here one which has been observed only quite recently and has a natural

extension to high dimensional simplicial complexes.

Let X be a finite connected k-regular graph, with adjacency matrix

A, denote k = q + 1 and

µ(X) = max{|λ|
∣∣λ e.v. of A, λ 6= ±k}.

So X is Ramanujan iff µ(X) ≤ 2
√
q. If X is bipartite, write V = V0∪V1

where V0 and V1 are the two sides, and if not V = V0 = V1. Let

L2
00(X) = {f ∈ L2(V )

∣∣∑

v∈Vi

f(v) = 0, for i = 0, 1}.

So, µ(X) is the largest (in absolute value) eigenvalue of A when acting

on L2
00(X). For λ ∈ [2

√
q, q + 1] write λ = q1/p + q(p−1)/p for a unique

p ∈ [2,∞], so λ = 2
√
q when p = 2.

Now, let π : T = Tk → X be a covering map. For a fixed t0 ∈ T ,

let Sr = {t ∈ T
∣∣distance(t, t0) = r} and for f ∈ L2

00(X) and t ∈ T , let

f̃(t) = 1
|Sr|

∑
s∈Sr

f(π(s)) if r = dist(t, t0), i.e. f̃ is the averaging of the

lift of f around t0.

Theorem 1.2 (Kamber [Kam17a]). µ(X) ≤ λ if and only if f̃ ∈
Lp+ε(T ) for all f ∈ L2

00(X), t0 ∈ T , and ε > 0. As a corollary X is

Ramanujan iff

f̃ ∈ L2+ε(T ), ∀t0, ∀f, ∀ε.

2. High dimensional expanders: spectral gap

As described in §1, the notion of expander graphs can be expressed

via a spectral gap property of the Laplacian. This aspect has a natural

high dimension version, but to present it one needs the language of real

cohomology. Let us start by recalling the basic notations.

2.1. Simplicial complexes and cohomology. A finite simplicial

complex X is a finite collection of subsets, closed under inclusion, of

a finite set X(0), called the set of vertices of X . The sets in X are

called simplices or faces and we denote by X(i) the set of simplices of

X of dimension i (i-cells), which are the sets in X of size i + 1. So
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X(−1) is comprised of the empty set, X(0) - of the vertices, X(1) - the

edges, X(2) - the triangles, etc. Let d = dimX = max{i|X(i) 6= ∅} and

assume X is a pure simplicial complex of dimension d, i.e., for every

F ∈ X , there exists G ∈ X(d) with F ⊆ G. Throughout this discussion

we will assume that X(0) = {v1, . . . , vn} is the set of vertices and we fix

an order v1 < v2 < . . . < vn among the vertices. Now, if F ∈ X(i) we

write F = {vj0, . . . , vji} with vj0 < vj1 < . . . < vji . If G ∈ X(i−1), we

denote the oriented incidence number [F : G] by (−1)ℓ if F\G = {vjℓ}
and 0 if G * F . In particular, for every vertex v ∈ X(0) and for the

unique face ∅ ∈ X(−1), [v : ∅] = 1.

If F is a field then C i (X,F) is the F-vector space of the functions

from X(i) to F. This is a vector space of dimension
∣∣X(i)

∣∣ over F where

the characteristic functions
{
eF

∣∣F ∈ X(i)
}
serve as a basis.

The coboundary map δi : C
i (X,F) → C i+1 (X,F) is given by:

(δif) (F ) =
∑

G∈X(i)

[F : G] f (G) .

So, if f = eG for some G ∈ X(i), δieG is a sum of all the simplices of

dimension i + 1 containing G with signs ±1 according to the relative

orientations.

It is well known and easy to prove that δi◦δi−1 = 0. Thus Bi (X,F) =
im δi−1 - “the space of i-coboundaries” is contained in Z i (X,F) = ker δi
- the i-cocycles and the quotient H i (X,F) = Z i (X,F)/Bi (X,F) is the
i-th cohomology group of X over F.

In a dual way one can look at Ci (X,F) - the F-vector space spanned
by the simplices of dimension i. Let ∂i : Ci (X,F) → Ci−1 (X,F)
be the boundary map defined on the basis element F by: ∂F =∑

G∈X(i−1) [F : G] ·G, i.e. if F = {vj0, . . . , vji} then ∂iF =
∑i

t=0 (−1)t

{vj0, . . . , v̂jt, . . . , vji}. Again ∂i ◦ ∂i+1 = 0 and so the boundaries

Bi (X,F) = im ∂i+1 are inside the cycles Zi (X,F) = ker ∂i and

Hi (X,F) = Zi (X,F)/Bi (X,F) gives the i-th homology group of X

over F. As F is a field, it is not difficult in this case to show that

Hi (X,F) ≃ H i (X,F).
In the next section, we will need the case F = F2 - the field of

two elements, but for the rest of Section 2 we work with F = R.
In this case C i(X,R) has the natural structure of a Hilbert space,

where for f, g ∈ C i(X,R), 〈f, g〉 =
∑

F∈X(i)

deg(F )f(F )g(F ), when

deg(F ) = #{G ∈ X(d)
∣∣G ⊇ F}. Now, Ci(X,R) is the dual of C i(X,R)

in a natural way and we can identify them and treat the operators
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∆up
i = δ∗i δi,∆

down
i = δi−1δ

∗
i−1 and ∆i = ∆up

i +∆down
i as operators from

C i to C i, all are self-adjoint with non-negative eigenvalues. One may

check that

(δ∗i f) (G) =
1

deg (G)

∑

F∈X(i+1)

[F : G] deg (F ) f (F )

for f ∈ C i+1 (X,R) and G ∈ X(i), so in the regular case δ∗i is equal to

∂i+1 up to a constant multiple. Define Zi = ker δ∗i−1 and Bi = im δ∗i (so

in the regular case Zi = Zi,Bi = Bi). The following proposition, going

back to Eckmann [Ec44], is elementary:

Proposition 2.1 (Hodge decomposition). C i = Bi ⊕ Hi ⊕ Bi when

Hi = Ker(∆i) is called the space of Harmonic cycles. In fact Hi ≃
H i(X,R). Note that ∆up

i vanishes on Z i = Bi ⊕Hi.

Definition 2.2. The i-dimensional spectral gap of X is λ(i)(X) =

min{λ
∣∣λ e.v. of ∆up

i

∣∣
(Bi)⊥

}. One may check that (Bi)⊥ = Zi, and

as ∆up
i = δ∗i ◦ δi, we have

λ(i)(X) = inf
f∈(Bi)⊥

{ |〈∆up
i f, f〉|
〈f, f〉

}
=

(
inf
f∈Zi

{‖δf‖
‖f‖

})2

.

Also, ∆up
i vanishes also on Hi, so λ(i)(X) > 0 implies H i(X,R) = {0},

and the converse is also true.

For a k-regular graph (B0)⊥ = Z0 = L2
0(X) and so λ1(X) that was

defined in §1 for a graph X , is λ(0)(X) in the notations here. We define:

Definition 2.3. A pure d-dimensional simplicial complex will be called

ε-spectral expander if for every i = 0, . . . , d− 1, λ(i) ≥ ε.

Recall that the Alon-Boppana theorem asymptotically bounds the

spectral gap of k-regular graphs by that of their universal cover, the

k-regular tree. In higher dimension the situation is more involved:

Theorem 2.4 ([PR17]). For an infinite complex X, let λ(i)(X) be the

bottom of the spectrum of ∆up
i (X) on (Bi)⊥. Let {Xn} be a family

of quotients of X, such that the injectivity radius of Xn approaches

infinity. If zero is not an isolated point in the spectrum of ∆up
i (X), on

(Gi)⊥, then

lim inf
n→∞

{λ(i)(Xn)} ≤ λ(i)(X).

Note that zero cannot be an isolated point in the spectrum of the

Laplacian of an infinite graph, since the constant function is not in L2.

However, for complexes of higher dimensional this can happen, and in
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this case the Alon-Boppana principle can be violated (see [PR17, Thm.

3.10] for an example).

2.2. Garland method. The seminal paper of Howard Garland

([Gar73], see also [Bor73]), can be considered as the first paper on

high dimensional expanders. It gave examples of spectral expanders,

by a method which bounds the eigenvalues of the simplicial complex

by the eigenvalues of its links. Garland’s method has been revisited in

recent years with various simplifications and extensions. Let us give

here one of them, but we need more definitions: If F is a face of X of

dimension i, the link of F in X denoted ℓkX(F ), is

ℓkX(F ) := {G ∈ X
∣∣F ∪G ∈ X,F ∩G = ∅}.

One can easily check that if X is a pure simplicial complex of dimension

d, dim(ℓkX(F )) = d− i− 1.

Garland’s method can be conveniently summarized by the following

theorem. Note that if dim(X) = d and dim(F ) = d − 2, then ℓkX(F )

is a graph.

Theorem 2.5 (Garland, cf. [GuWa16] ). If dim(X) = d and for every

face F of dimension d− 2, λ(0)(ℓkX(F )) ≥ ε, then

λ(d−1)(X) ≥ 1 + d ε− d.

So, Garland’s method enables to give a fairly good bound on

λ(d−1)(X) if all links of d − 2 faces are very good expanders. One

can use the result to bound also λ(j)(X) for j ≤ d− 1, by replacing X

with its j+1 skeleton, i.e., the collection of all the faces of X of dimen-

sion at most j + 1. In fact, even more: if the links of the (d− 2)-faces

are excellent expander graphs and the 1-skeleton is connected, then the

complex is spectral expander (cf. [Op17b]). In the next subsection, we

will explain Garland’s motivation and results. But in recent years his

method have been picked up in various different directions. Most of

them have to do with vanishing of some cohomology groups.

One of the nicest applications of Garland’s method is the work of Zuk

[Zu03], Pansu[Pa98] and Ballman-Swiatkowski [BaSw97]. The starting

point of these works is the well-known result that a discrete group Γ has

Kazhdan property (T ) iff H1(Γ, V ) = {0} for every unitary represen-

tation of Γ on any Hilbert space. These authors used Garland’s work

to deduce such a vanishing result for H1 if Γ acts cocompactly on an

infinite contractible simplicial complex of dimension 2 all of whose ver-

tex links are very good expanders. The most amusing is Zuk’s method
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which enables (sometimes) to deduce property (T ) from a presentation

of Γ by generators and relations. For example it shows property (T )

for some random groups (see also [KK13]). This is very different than

the way Kazhdan produced the first groups with property (T ) and it

shows that property (T ) is not such a rare property.

A work of a similar flavor but in a different direction is the work

of De Chiffre, Glebsky, Lubotzky, and Thom ([DGLT]). Recall first

(vaguely) the basic definition of “group stability”: Consider the degree

n unitary group U(n) with an invariant metric dn. We say that a group

Γ presented by a finite set of generators S with finitely many relations

R, is (U(n), dn)-stable if every almost representation ρ of Γ into U(n)

is close to a representation ρ̃. By “almost” we mean that ρ(r) is very

close to the identity for every r ∈ R and “close” means that ρ(s) and

ρ̃(s) are close w.r.t. dn, for every s ∈ S. One can study these questions

w.r.t. different distance functions, e.g., the one induced by the Hilbert-

Schmidt norm, the operator norm or the L2-norm, a.k.a. the Frobenius

norm.

Let us stick to the L2-norm. In [DGLT] it is shown that ifH2(Γ, V ) =

{0} for every unitary representation of Γ, then Γ is (U(n), dL2)-stable.

Then the Garland method is used (along the line of the results men-

tioned above for H1) to produce many examples of L2-stable groups

by considering actions on 3-dimensional infinite simplicial complexes,

whose edge-links are excellent expanders. This implies that many high

rank cocompact lattices in simple p-adic Lie groups are (U(n), dL2)-

stable. The most striking application is proving that there exists a

group which is not L2-approximated (the reader is referred to [DGLT]

for the definitions and exact results and to [T18] for background and

applications).

In [GuWa16], Gundert and Wagner used the Garland method to

estimate the eigenvalues of random simplicial complexes - see also §4.
For some stronger versions of Garland’s method - see [Op17a], [Op17b]

and the references therein.

2.3. Bruhat-Tits buildings and their finite quotients. Let K be

a non-Archimedean local field, i.e., K is a finite extension of Qp, the

field of p-adic numbers, or K is Fq((t))-the field of Laurent power series

over a finite field Fq. Let O be the ring of integers ofK, M the (unique)

maximal ideal of O, and Fq = O/M the finite quotient where q = pℓ

for some prime p and ℓ ∈ N. Let G
˜

be a K-simple simply connected
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group of K-rank r, e.g., G
˜

= SLn in which case r = n − 1, and let

G = G
˜
(K).

Bruhat and Tits developed a theory which associates with G an in-

finite (if r ≥ 1) contractible simplicial complex B = B(G) of dimension

r. Here is a quick description of it: G has r + 1 conjugacy classes

of maximal compact subgroups (cf. [PlRa91, Theorem 3.13, p. 150])

and a unique class of maximal open pro-p subgroups, called Iwahori

subgroups. The vertices of B are the maximal compact subgroups (so

they come with r + 1 “colors” according to their conjugacy class) and

a set of i+ 1 such vertices form a cell if their intersection contains an

Iwahori subgroup. This is an r-dimensional simplicial complex whose

maximal faces can be identified with G/I when I is a fixed Iwahori

subgroup (for more see [BrTi72], [PlRa91] and [Lub14] for a quick ex-

plicit description of B (SLn(Qp)). The case of B (SL2(K)), which is a

(q + 1)-regular tree, is studied in detail in [Se80]).

Let Γ be a cocompact lattice in G, i.e., a discrete subgroup with

Γ\G compact. Assume, for simplicity that Γ is torsion free, a condition

which can always be achieved by passing to a finite index subgroup.

Such Γ is always an arithmetic lattice if r ≥ 2 by Margulis arithmeticity

Theorem ([Mar91]) and, at least if char(K) = 0, there are always such

lattices by Borel and Harder ([BoHa78]). When we fix K and G and

run over all such lattices in G, for example, over the infinitely many

congruence subgroups of Γ, we obtained a family of bounded degree

simplicial complexes, i.e. every vertex is included in a bounded number

of faces. These simplicial complexes, give the major examples of “high

dimensional expanders” discussed in this paper.

Garland’s method described in the previous subsection was devel-

oped by him in order to prove a conjecture of Serre asserting that if

r ≥ 2, H i(Γ,R) = {0} for every Γ as above and every 1 ≤ i ≤ r − 1.

Indeed, the vertex links of the building B are the associated spherical

building over the finite field Fq (for example, for G
˜
= SLn, this is the

flag complex of the proper subspaces of Fn
q ). For such buildings, for ev-

ery cell F ∈ X(i), 0 ≤ i ≤ d− 2, one has λ(0) (ℓk(F )) → 1 when q → ∞
(e.g. for G

˜
= SL3, we get the (q + 1)-regular “points to lines graph” of

the projective plane P(F3
q), for which one can check that λ1 = 1 − 1√

q
.

See [Gar73, BaSw97, EvKa16]). One therefore can deduce from Theo-

rem 2.5 that if q ≥ q(G
˜
), then λ(i)(X) > ε′ for every i = 1, . . . , r−1 and

every finite quotient X of B = B(G). In particular, all these quotients

are spectral expanders as defined in Definition 2.3.



10 A. LUBOTZKY

This also implies Serre’s conjecture if q is sufficiently large (see Def-

inition 2.2). Serre’s conjecture has been proved in full since then

(cf. [Ca74] and [BoWa80, Chap. XI]) by representation theoretic meth-

ods, but Garland’s method has its own life in various other contexts.

In Section 1, Theorem 1.2, we saw that expander graphs can also be

defined as “Lp-expanders” for a suitable 2 ≤ p ∈ R. This definition can

be extended to high dimensional simplicial complexes and is especially

suitable in the context of this subsection.

Let B be one of the Bruhat-Tits buildings described above and π :

B → X the covering map. Let f ∈ L2
0(X

(r)), i.e. a function orthogonal

to the constants on the r-cells of X (one can consider also i-cells for

0 ≤ i ≤ r, but we stick to these for simplicity of the exposition, the

reader is referred to [Kam17b] for a more general setting). Now, using

the notion of W -distance on B(r), when W is the affine Weyl group

of G, one can define for a fixed t0 ∈ B(r), a function f̃ on B(r) - the

r-faces of B, as follows: For t ∈ B(r), let f̃(t) = 1
|St|

∑
s∈St

f (π(s)) when

Sℓ = {s ∈ B(r)
∣∣W -distance (s, t0) = W -distance (t, t0)}.

Definition 2.6. We say that X is Lp-expander if for every t0 and f as

above f̃ ∈ Lp+ε(B(r)) for every ε > 0.

Applying Oh’s result [Oh02] which gives the exact rate of decay of

the matrix coefficients of the unitary representations of G, the so-called

“quantitative property (T )”, Kamber deduced that X as above are

always Lp-expanders when p = p(G) according to the following table.

W Ãn B̃n C̃n D̃n, n even D̃n, n odd Ẽ6 Ẽ7 Ẽ8 F̃4 G̃2

p 2n 2n 2n 2(n− 1) 2n 16 18 29 11 6

Let us stress that this is not just an abstract result. From this fact,

we can deduce non-trivial inequalities on the eigenvalues of various

“Hecke operators” acting on the faces of X . The reader is referred to

[Kam17b] for more in this direction.

2.4. Ramanujan complexes. Ramanujan graphs stand out among

expander graphs as the optimal expanders from a spectral point of

view (cf. [Val97]). These are the finite connected k-regular graphs X

for which every eigenvalue λ of the adjacency matrix A = AX satisfies

either |λ| = k or |λ| ≤ 2
√
k − 1. The first constructions of such graphs

were presented as an application of the works of Deligne (in charac-

teristic zero) and Drinfeld (in positive characteristic) proving the so
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called Ramanujan conjecture for GL2 (see [Lub94] for a detailed sur-

vey). Recently, a new (non-constructive) method has been presented

in [MSS15].

It is therefore not surprising that following the work of Laurent Laf-

forgue [Laf02] (for which he got the Fields Medal) extending Drinfeld’s

work from GL2 to GLd, general d, several mathematicians have started

to develop a high dimensional theory of Ramanujan simplicial com-

plexes, cf. ([CSZ03], [Li04], [LSV05a], [LSV05b], [Sar07]). One may

argue what is “the right” definition of Ramanujan complexes (see the

above references and [KLW10], [Kan16], [Fi16], [Kam17b], [LLP17]).

This topic deserves a survey of its own. Here we just briefly point

out some directions of research which came out in the work of several

mathematicians.

In the context ofX = Γ\B where B a Bruhat-Tits building associated

with G = G
˜
(K) as in §2.3, and Γ a cocompact lattice acting on it, the

most sensible definition seems to be the following:

Definition 2.7. In the notation above, Γ \ B is called a Ramanu-

jan complex if every infinite dimensional irreducible I-spherical G-

subrepresentation of L2(Γ \G) is tempered.

Recall that I is the Iwahori subgroup defined above, a representation

is I-spherical if it contains a non-zero I-fixed vector and it is tempered

if it is weakly-contained in L2(G).

This definition can be expressed also in other ways; it is L2-expander

in the notations of [Kam17b] and Definition 2.6 above. It can also be

expressed in a combinatorial-spectral way. For the group SL2, in which

case B is a (q + 1)-regular tree and X = Γ \ B is a (q + 1)-regular

graph, this definition is equivalent to the graph being Ramanujan

graph. Ramanujan complexes are also optimal among high-dimensional

expanders (see [Li04], [LSV05a] and [PR17]). For most applications so

far (such as the geometric and topological expanders to be presented

in §3) one does not need the full power of the Ramanujan property

and quantitative Property (T ) (á la Oh [Oh02], see §2.3) suffices. On

the other hand the study of the cut-off phenomenon of Ramanujan

complexes in [LLP17] did use the full power of the Ramanujan prop-

erty. The same can be said about the application of Ramanujan graphs

and Ramanujan complexes to the study of “golden gates” for quantum

computation (see [PS17] and [PS18]), where the Ramanujan bounds

give a distribution of elements in SU(2) with “optimal entropy”.
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The Ramanujan graphs of [LPS88] (a.k.a. the LPS-graphs) have also

been used to solve other combinatorial problems. For example they

give the best (from a quantitative point of view) known examples of

“high girth, high chromatic number” graphs. After finding the appro-

priate high dimensional notions of “girth” and “chromatic number”,

these results can indeed be generalized to the Ramanujan complexes

constructed in [LSV05b], (see [LM07], [GP14], [EGL15]).

Ramanujan graphs can be characterized as those graphs whose as-

sociated zeta functions satisfy “the Riemann Hypothesis (RH)” - see

[Lub94], for an exact formulation and references. An interesting direc-

tion of research is to try to associate to high dimensional complexes

suitable “zeta functions” with the hope that also in this context the

Ramanujaness of the complex can be expressed via the RH. For this di-

rection or research - see [Sto06], [KaLi14], [DK14], [KLW10], [Kan16],

[Kam17b] and [LLP17].

3. Geometric and Topological expanders

In this chapter we will describe a phenomenon which is truly high di-

mensional; the geometric and topological overlapping properties which

lead to geometric and topological expanders. The latter call for

coboundary and cosystolic expanders.

3.1. Geometric and Topological overlapping. Our story begins

with a result of Boros and Füredi [BF84], at the time two undergrad-

uates in Hungary, who proved the following result, as a response to a

question of Erdös: If P is a set of n points in R2, then there exists a

point z ∈ R2 which is covered by
(

2
9
− o(1)

)(
n
3

)
of the

(
n
3

)
affine tri-

angles determined by these points. Shortly afterward Bárany [Bar82]

proved the d-dimensional version: For every d ∈ N, ∃ 0 < Cd ∈ R, such
that if P ⊆ Rd with |P | = n, then there exists z ∈ Rd which is covered

by at least Cd

(
n

d+1

)
of the

(
n

d+1

)
affine simplices determined by these

points.

While 2/9 is optimal for d = 2, it is not known what are the optimal

Cd’s, neither what is their rate of convergence to 0, when d goes to

infinity.

Bárany’s result can be rephrased as: Let ∆
(d)
n be the complete d-

dimensional simplicial complex on n vertices (i.e. the collections of all

subsets of [n] of size at most d + 1) and f : ∆
(d)
n → Rd an affine map.

Then there exists z ∈ Rd which is covered by at least Cd

(
n

d+1

)
of the

images of the d-dimensional faces.
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In [Gro10], Gromov proved the following amazing result: Bárany’s

theorem above is true for every continuous map f : ∆
(d)
n → Rd. In fact,

he proved it with constants Cd ∈ R which were better than what was

known before for affine maps. The reader is encouraged to draw the

2-dimensional case to realize how surprising and even counter-intuitive

this theorem is! Gromov also changed the point of view on these types

of results; rather than thinking of them as properties of Rd, think of

them as properties of the simplicial complex X . Let us now define:

Definition 3.1. A d-dimensional pure simplicial complex X is said

to be ε-geometric (resp. ε-topological) expander if for every affine

(resp. continuous) map f : X → Rd, there exists z ∈ Rd such that

ε-proportion of the images of the d-cells in X(d), covers the point z.

So Bárany (resp., Gromov) Theorem is the claim that ∆
(d)
n , the com-

plete simplicial complex of dimension d on n vertices, is Cd-geometric

(resp., Cd-topological) expander.

Let us look for a moment at the case of dimension one to see why

we call this property “expander”: If X = (V,E) is an expander graph

and f : X → R any continuous map, choose a point z ∈ R such that

the two disjoint sets

A = {v ∈ V
∣∣f(v) < z} and B = {v ∈ V

∣∣f(v) > z}
are of size approximately |V |

2
. By the expansion property, there are

many edges in E which connect A and B. The image of each such an

edge under f must pass through z by the mean value theorem. Hence

X is also a topological expander.

We should mention that a topological expander graph X does not

have to be an expander graph. Moreover, it does not even have to be

connected. For example, assume X is a union of a large expander graph

and another small (say of size o(|X|)) connected component. Then X

is a topological expander even though it is not an expander graph.

Anyway, Gromov and Bárany Theorems refer to the complete sim-

plicial complexes: note how difficult is the case d ≥ 2 and how triv-

ial it is to prove that the complete graph is an expander. Gromov

also proved that some other interesting simplicial complexes are d-

dimensional topological expanders, e.g., the flag complexes of d + 2

dimensional vector spaces over finite fields or more generally spherical

buildings of simple algebraic groups over finite fields (cf. [LMM16]).

All these examples are not of bounded degree. Recall (see also Defi-

nition 4.1 below) that we say that a family of d-dimensional simplicial
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complexes are of bounded degree (resp. bounded upper degree) if for

every vertex v (resp., every face F of dimension d − 1) the number

of faces containing it is bounded. The non trivial aspect of expander

graphs in dimension one is the construction of such graphs of bounded

degree.

Gromov [Gro10] put forward the basic questions: Let d ≥ 2, are

there bounded degree d-dimensional geometric/topological expanders?

The existence of geometric expanders of bounded degree was shown

by Fox, Gromov, Lafforgue, Naor and Pach [FGLNP12] in several ways

- most notably are two: the random method which we will come back

to in §4 and the second is by showing that for a fixed d, if q is a

large enough (depending on d) and fixed, the Ramanujan complexes

described in §2.4 are geometric expanders of bounded degree. A more

general version was given by Evra [Ev17] .

Theorem 3.2. Given 2 ≤ d ∈ N, there exists q0 = q0(d) and ε = ε(d)

such that for every q > q0, if K is a non-Archimedean local field of

residue degree q and G
˜
a simpleK-algebraic group of K-rank d, then the

finite quotients of B = B(G
˜
(K)) - the Bruhat-Tits building associated

with G = G
˜
(K) - are all ε-geometric expanders.

Theorem 3.2 is deduced in [Ev17] in a similar way as the proof in

[FGLNP12] using a “mixing lemma” and a classical convexity result of

Pach [Pac98]. The mixing lemma is deduced there from Oh’s “quantita-

tive property (T ) ([Oh02]). The language of Lp-expanders described in

§2 gives a systematic way to express this. (Compare also to [PRT16]).

The fact that we have an ε = ε(d) which is independent of q, provided

q > q0, (which is more than one needs in order to answer Gromov’s

geometric question) is due to the fact that for a fixed d ∈ N, one has

the same p in the table in §2.3. which works for all groups of rank d.

The question of bounded degree topological expanders is much more

difficult and will be discussed in the next subsections.

3.2. Coboundary expanders. As of now there is only one known

method (with several small variants) to prove that a simplicial complex

X is a topological expander. This is via “coboundary expander” which

requires the language of cohomology as introduced in §2.1, but this

time with F2-coefficients.
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Let X be a finite d-dimensional pure simplicial complex, define on it

a weight function w as follows: for F ∈ X(i) let

w(F ) =
1(

d+1
i+1

)
|X(d)|

∣∣{G ∈ X(d)|G ⊇ F}
∣∣ .

One could work with a number of different weight functions, but this

one is quite pleasant, for example, it is a probability measure on X(i);

one easily checks that
∑

F∈X(i)

w(F ) = 1. Now for f ∈ C i(X,F2), de-

note ‖f‖ =
∑

w(F )
{F∈X(i)|f(F )6=0}

. We can now define the important notion of

“coboundary expanders” - a notion which was independently defined by

Linial-Meshulam [LM06] and Gromov [Gro10] (in both cases without

calling it coboundary expanders).

Definition 3.3. Let X be as above:

(a) For 0 ≤ i ≤ d − 1, define the ith coboundary expansion hi(X) of

X as:

hi(X) = min
f∈Ci\Bi

‖δif‖
‖[f ]‖

where [f ] = f + Bi is the coset of f w.r.t. the i-coboundaries and

‖[f ]‖ = min
g∈[f ]

‖g‖. (Note that ‖[f ]‖ is the “normalized distance” of

f from Bi). Let h(X) = min{hi(X)|i = 0, . . . , d− 1}.
(b) The complex X is said to be ε-coboundary expander if h(X) ≥ ε.

A few remarks are in order here:

(i) The reader can easily check that if X is a k-regular graph, then

h(X) = 2
k
· h(X) where h(X) is the Cheeger constant of the

graph as defined in §1. So, indeed the above definition extends

the notion of expander graphs.

(ii) The definition of εi, and especially the fact that the minimum

runs over f ∈ C i \ Bi looks unnatural at first sight, but if we

recall that ‖[f ]‖ is exactly the “norm” of the element in f + Bi

which is closest to Bi, we see that this corresponds to going over

(Bi)⊥ when we consider real coefficients. Moreover as pointed out

in §2, over R,
〈∆up

i f, f〉
〈f, f〉 =

‖δif‖
‖f‖

and so the definition of hi here is “the characteristic 2 analogue”

of the spectral gap defined in Definition 2.2. For the connection
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between the spectral gap and the coboundary expansion - see

[SKM14], [PRT16] and [GS15].

(iii) Also here it is easy to see that hi(X) > 0 iff H i(X,F2) = {0}.
A basic result proved independently in [LM06], [MW09] and [Gro10]

is:

Theorem 3.4. for the complete d-dimension complex ∆
(d)
n ,hi(∆

(d)
n ) ≥

1− od(1) for every i = 0, . . . , d− 1.

Here is Gromov fundamental result on the connection between

coboundary expanders and topological expanders:

Theorem 3.5. Coboundary expanders are topological expanders,

namely, for every d ∈ N and 0 < ε ∈ R, there exists ε1 = ε1(d, ε) > 0

such that if X is a d-dimensional complex which is an ε-coboundary

expander then it is an ε1-topological expander.

Now, combining Theorem 3.5 with Theorem 3.4, one deduces that

∆
(d)
n are topological expanders as mentioned in §3.1.
But these are of unbounded degree. Naturally, as the finite quotients

of the high rank Bruhat-Tits building are spectral and geometric ex-

panders, one tends to believe that they are also topological expanders.

This is still an open problem. Let us say right away that in general

these quotients (and even the Ramanujan complexes) are not cobound-

ary expanders. As was explained in [KKL16] for many of the lattices

Γ in simple p-adic Lie groups, H1(Γ \ B,F2) 6= {0} since it is equal to

H1(Γ,F2) = Γ/[Γ,Γ]Γ2 (since B is contractible) and the latter is often

non-zero. Thus hi(Γ\B) = 0 and Γ\B is not a coboundary expanders.

Still, one can overcome this difficulty. For this we need another

definition:

Definition 3.6. A d-dimensional complex X is called ε-cosystolic ex-

pander, if for every i = 0, . . . , d− 1, one has νi(X) ≥ ε and µi(X) ≥ ε

when:

νi(X) = min
f∈Ci\Zi

‖δi(f)‖
‖⌈f⌉‖

where ⌈f⌉ = f + Z i and

‖⌈f⌉‖ = min{‖g‖
∣∣ g ∈ ⌈f⌉}

and

µi = min
f∈Zi\Bi

‖f‖.
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For later use, let us denote µ(X) = minµi(X) and ν(X) =

min νi(X). So, X is ε-cosystolic expansion if µ(X) ≥ ε and ν(X) ≥ ε.

So, X is “ε-cocycle expander”; it may not be coboundary expander if

H i 6= {0} (for some i = 0, . . . , d − 1) but at least every representative

of a non-trivial cohomology class is “large”.

An extension of Gromov’s Theorem 3.5 is given in [DKW16]:

Theorem 3.7. Cosystolic expanders are topological expanders.

It is natural to conjecture that the Ramanujan complexes and more

generally the quotients of the high rank Bruhat-Tits buildings, while

not coboundary expanders, in general, are still cosystolic expanders.

But also this is open. What is known is a somewhat weaker result

which still suffices to answer, in the affirmative, Gromov’s question on

the existence of bounded degree topological expanders. The following

theorem was proved by Kaufman-Kazhdan-Lubotzky [KKL16] for d ≤
3 and by Evra and Kaufman [EvKa16] for general d.

Theorem 3.8. Fix 2 ≤ d ∈ N, then there exists ε = ε(d) > 0 and

q0 = q0(d) such that if K is a local non-Archimedean field of fixed

residue degree q > q0 and G = G
˜
(K) with G

˜
simple K-group of K-rank

d, then the (d−1)-skeletons Y of the finite (d-dimensional) quotients X

of the Bruhat-Tits building B = B(G) form a family of bounded degree

(d− 1)-dimensional ε-cosystolic expanders.

As this Theorem holds for every d, it solves Gromov’s problem, but

in a somewhat unexpected way. We do believe that X in the theorem

are also cosystolic expanders and not just Y .

Evra and Kaufman in [EvKa16], give a quite general combinatorial

criterion to deduce a result like Theorem 3.8. They prove that if X is

a d-dimensional complex of bounded degree all of whose proper links

(i.e. ℓkX(F ) for every face F 6= ∅) are coboundary expanders, and all

the underlying graphs of all the links (including ℓkX(∅) = X) are “very

good” expander graphs, then the (d − 1)-skeleton of X is a cosystolic

expander. The reader is referred to [EvKa16] for the exact quantitative

formulation. It is in spirit an “F2-version” of Garland’s local to global

method described in §2.2. It will be interesting to strengthen this result

to the same level as Garland’s, i.e., to assume only that the proper links

are coboundary expanders and connected and X is connected. It will

be even more interesting if one could deduce (even with the current

hypothesis) that X itself is a cosystolic expander. This will show that
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the d-dimensional Ramanujan complexes are topological expanders and

not merely their (d− 1) skeletons as we now know.

The issue discussed in this section is only the tip of the iceberg.

There are many more interesting problems (see [Gro10], [GrGu12]) e.g.

every d-dimensional complex can be embedded in (2d+1)-dimensional

Euclidean space, but only some can be embedded in 2d. Prove that

high dimensional expanders (in some or any of the definitions) can not.

4. Random simplicial complexes

As mentioned briefly above, the easiest way to prove existence of

bounded degree expander graphs is by random methods. One may

hope that this can be extended to the higher dimensional case of d-

dimensional simplicial complexes. But, here the problem is much more

difficult. In fact, as of now, there is no known “random model” for d-

dimensional simplicial complexes of bounded degree (in the strong sense

- see below) which gives high dimensional topological expanders. This

is surprising as the existence of such topological expanders is known

by now by ([KKL16], [EvKa16]) as was explained in §3. One may start

to wonder if such a model exists at all, or maybe topological bounded

degree expanders of high dimension are very rare objects. Perhaps there

is a kind of rigidity phenomenon analogue to what is well known by

now in Lie theory and locally symmetric spaces: While there are many

different Riemann surfaces (parameterized by Teichmüller spaces), the

higher dimensional case is completely different and rigidity results say

that there are “very few” and mainly the ones coming from arithmetic

lattices.

Let us now leave aside such a speculation and give a brief background

and a short account of the known results:

Erdös and Rényi initiated the study of random graphs in their sem-

inal paper [ER60]. Their model is the following: Let n ∈ N and

p ∈ [0, 1], the random model X(n, p) is the graph X with vertex set

[n] = {1, . . . , n} and where for every 1 ≤ i 6= j ≤ n, the edge {i, j} is

in X with probability p, independently of all other edges. They then

study the properties of such graphs when n → ∞ (and p can be changed

with n). For example, their first famous result is that p0 = logn
n

is a

threshold for the connectedness of X ∈ X(n, p). Namely, for every

ε > 0, if p ≤ (1 − ε) logn
n

then almost surely (a.s.) such an X is not

connected, i.e. Prob. (X ∈ X(n, p) : X connected) −→
n→∞

0. On the

other hand, if p ≥ (1 + ε) logn
n

then X is a.s. connected.
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Why is p = logn
n

the threshold? Recall the “coupon collector prob-

lem” which asserts that if elements of [m] = {1, . . . , m} are chosen

independently at random with repetition, it will take t = m logn steps

to choose them all. In our process p
(
n
2

)
edges are chosen, and hence

2p
(
n
2

)
vertices. Now, if p < logn

n
then less than 2 logn

n
n2

2
= n logn vertices

are chosen. So w.h.p there is an isolated vertex! The amazing point in

the Erdös-Rényi result is the fact that once we cross the threshold, not

only are there no isolated vertices, but the graph is connected, and, in

fact, even an expander.

This was the starting point of a very elaborate (and very important)

theory of random graphs studying more and more delicate properties

of such X ∈ X(n, p).

In [LM06] Linial and Meshulam initiated such a theory for 2-

dimensional simplicial complexes. A theory which shortly afterward

was extended in [MW09] to the general d-dimensional case. The model

studied Xd(n, p) (nowadays called the Linial-Meshulam model for ran-

dom d-dimensional simplicial complexes) is the following: X ∈ Xd(n, p)

is a d-dimensional complex with [n] as the set of vertices, X contains

the full (d−1)-skeleton, i.e., every subset of [n] of size at most d is in X

and a subset of size d+ 1 is in X with probability p, independently of

the other d-cells. So X1(n, p) is exactly the Erdös-Rényi model. Now,

for d ≥ 2, such an X is always connected. But, note that X ∈ X1(n, p)

is connected if and only if H0(X,F2) = {0}, so Linial, Meshulam and

Wallach study for d ≥ 2 and X ∈ Xd(n, p), when Hd−1(X,F2) = {0}
and proved the following far reaching generalization of the Erdös-Rényi

theorem.

Theorem 4.1 ([LM06] for d = 2, [MW09] for all d). The threshold

for the homological connectivity, i.e. the vanishing of Hd−1(X,F2) for

X ∈ Xd(n, p) is p0 =
d logn

n
.

The heuristic here for d logn
n

is similar to the one above: The process

picks p
(

n
d+1

)
d-cells and hence (d + 1)p

(
n

d+1

)
(d − 1)-cells. So, if p <

d logn
n

less than (d+1)d logn
n

(
d

d+1

)
≈

(
n
d

)
log(

(
n
d

)
) (d− 1)-cells are chosen

and so there is a (d − 1)-cell τ with no d-cell containing it. Hence

the coboundary of eτ - the characteristic function of τ - is zero, i.e.

eτ ∈ Zd−1(X,F2). On the other hand eτ is not a coboundary (note

that in the complete d-dimensional complex δ(eτ ) 6= 0, so it is not even

a cocycle) and hence Hd−1(X,F2) 6= {0}. Again the interesting aspect

of the Linial-Meshulam-Wallach result is that once the threshold is
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passed, not only does Hd−1(X,F2) vanish, but X is even a coboundary

expander.

A nice theory of random complexes has started to emerge (see [Ka14]

and the references therein). As our main interest here is in expanders,

we refer mainly to [LM06], [MW09], and [DK12], noting that the results

there imply (just like in the case of graphs) that above the threshold the

complexes are not only homologically connected but also coboundary

expanders and therefore topological expanders. The papers [GuWa16]

and [KR16] bring in a very detailed study of the spectrum of the higher

dimensional Laplacians ∆i action on C i(X,R) for random X .

But our main interest is in bounded degree complexes. Recall that

Bollobas [Bo82] and others (see [Wo99] for a comprehensive survey)

have developed a theory of random k-regular graphs (for a fixed k)

which also got a lot of attention. This model, for k ≥ 3, gives almost

surely expander graphs of bounded degree.

One would like to have such a model for d-dimensional complexes.

But first, what do we mean by bounded degree? There are two natural

meanings in the literature, which coincide for d = 1.

Definition 4.1. A pure d-dimensional simplicial complex X is of de-

gree at most k if every vertex of it is contained in at most k cells of

dimension d (and so in at most 2d · k cells of any dimension). It is of

upper-degree at most k, if every face of dimension d− 1 is contained in

at most k cells of dimension d.

A natural model of bounded degree simplicial complexes Y d(n, k) is

given in [FGLNP12]: Assume, for simplicity, that (d + 1)|n and take

a random partition of [n] into n
d+1

subsets each of size d + 1. Choose

independently k such partitions and let Y be the simplicial complex

obtained by taking its cells to be all these k n
d+1

subsets as well as all

their subsets. The case d = 1 boils down to the standard model of

Bollobas.

Theorem 4.2 ([FGLNP12]). For every fixed d ∈ N, ∃k0 = k0(d), such

that for every k ≥ k0, a complex Y ∈ Y d(n, k) is almost surely d-

dimensional geometric expander.

This theorem is very promising at first sight, but unfortunately,

Y ∈ Y d(n, k) is typically neither coboundary expander nor topolog-

ical expander. To visualize this think about the d = 2 case: When k is

fixed and n very large, for a typical Y ∈ Y 2(n, k), every edge of Y is

contained in at most one triangle. So, homotopically Y looks more like
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a graph and one can map it into R2 with only small size overlapping

points.

So, altogether, this is a nice model which certainly deserves further

study (e.g. what is the threshold for k0 = k0(d) in Theorem 4.3?)

but it will not give us the stronger versions of expansion (topological,

cosystolic, coboundary etc.). As hinted at the beginning of this section,

it is still a major open problem to find a random model (if such at all

exists) of d-dimensional bounded degree simplicial complexes which

will give, say, topological expanders.

The situation with bounded upper degree is better: In [LM15]

Lubotzky and Meshulam gave a model for 2-dimensional complexes

of bounded upper degree (using the theory of Latin squares) and it

was shown to produce coboundary expanders (and so also topolog-

ical expanders). This was generalized to all d by Lubotzky-Luria-

Rosenthal [LLR15], with a slight twist of the construction, replacing

the Latin squares by Steiner systems and using the recent breakthrough

of Keevash [Kee14] on existence of designs. Let us briefly describe the

general model W d(n, k).

Let r ≤ q ≤ n be natural numbers and λ ∈ N. An (n, q, r, λ)-design

is a collection S of q-element subsets of [n] such that each r-element

subset of [n] is contained in exactly λ elements of S. Given n, d ∈ N, an
(n, d)-Steiner system is an (n, d+1, d, 1)-design, namely, a collection S

of subsets of size d + 1 of [n], such that each set of size d is contained

in exactly one element of S. Using the terminology of simplicial com-

plexes, an (n, d)-Steiner system can be considered as a d-dimensional

simplicial complex of upper degree one. Recently, in a groundbreak-

ing paper [Kee14], Peter Keevash gave a randomized construction of

Steiner systems for any fixed d and large enough n satisfying certain

necessary divisibility conditions (which hold for infinitely many n ∈ N).
From now on, we will assume that given a fixed d ∈ N, the value of n

satisfies the divisibility condition from Keevash’s theorem.

Keevash’s construction of Steiner systems is based on randomized

algorithm which has two stages. We will explicitly describe the first

stage and use the second stage as a black box.

Given a set of d-cells A ⊆
(

[n]
d+1

)
, we call a d-cell τ legal with respect

to A if there is no common (d − 1)-cell in τ and in any cell in A.

Non-legal cells are also called forbidden cells.
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In the first stage of Keevash’s construction, also known as the greedy

stage, one selects a sequence of d-cells according to the following pro-

cedure. In the first step, a d-cell is chosen uniformly at random from(
[n]
d+1

)
. Next, at each step a legal d-cell (with respect to the set of

d-cells chosen so far) is chosen uniformly at random and is added to

the collection of previously chosen d-cells. If no such d-cell exists the

algorithm aborts. The procedure stops when the number of (d − 1)-

cells which do not belong to the boundary of the chosen d-cells is at

most nd−δ0 for some fixed δ0 > 0 which only depends on d. In partic-

ular, if the algorithm does not abort the number of steps is at least

(
(
n
d

)
− nd−δ0)/(d+ 1) ≥ nd/(2(d+ 1)!).

In the second stage, Keevash gives a randomized algorithm that adds

additional d-cells in order to cover the remaining (d− 1)-cells that are

not contained in any of the d-cells chosen in the greedy stage. We

do not need to go into the details of this algorithm. The important

thing for us is that with high probability the algorithm produces an

(n, d)-Steiner system.

Fix k ∈ N and let S1, . . . , Sk be k independent copies of (n, d)-Steiner

systems chosen according to the above construction, and let X be the

d-dimensional simplicial complex whose d-cells are
k⋃

i=1

Si, so X contains

the complete (d− 1)-skeleton and it is of upper degree at most k.

We can now state the main result of [LLR15]:

Theorem 4.3. Fix d ∈ N, there exists k0 = k0(d) and ε = ε(d), such

that for every k ≥ k0, a random complex W ∈ W d(n, k) is almost surely

an ε-coboundary expander, and hence also a topological expander.

It will be of great interest to study various other properties of this

model. For example, find the threshold for k0(d) (the estimates ob-

tained from [LLR15] are huge and it will be very interesting to give

more realistic upper bound, note that for d = 1, k0(d) = 3). Another

interesting problem is to study π1(W )-the fundamental group of W ;

when is it hyperbolic? has property (T )? trivial? The model W be-

haves w.r.t. the model X as Bollobas’ model w.r.t. Erdös-Rényi, and

this suggests many further directions of research on these bounded up-

per degree complexes.

5. High dimensional expanders and computer science

In recent years high dimensional expanders have captured the in-

terest of computer scientists and various connections and applications
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have popped up. Most of these works are in their infancy. We will give

here only a few short pointers on these developments, with the hope

and expectation that the future will bring much more.

Probabilistically Checkable Proofs: The PCP theorem, proven

in the early 90’s (cf. [AS, ALMSS]), is a cornerstone of modern com-

putational complexity theory stating that proofs can be written in a

robust locally-testable format. PCPs are related to many areas within

theoretical computer science ranging from hardness of approximation

to delegation and efficient cloud computing.

The basic PCP theorem can be proven using an expander-graph-

based construction [Din07]. For stronger PCPs, e.g. with unique con-

straints, or shorter proof length, or with lower soundness error, stronger

forms of expansion seem to be needed, in particular high dimensional

expansion might play a pivotal role. Dinur and Kaufman [DK17] ex-

plore replacing the standard direct product construction (also known

as parallel repetition [Raz98]) by a much more efficient bounded-degree

high dimensional expanders as constructed in [?]. Direct products are

ubiquitous in complexity, especially as a useful hardness amplification

construction, and bounded-degree high dimensional expanders may po-

tentially be useful in many of those settings.

Locally testable codes: LTCs are an information-theoretic analog

of PCPs. These error correcting codes have the additional property

that it is possible to locally test whether or not a received word is close

to being a codeword. Unlike many problems in coding theory, this is a

property that random codes do not have. This makes it even more chal-

lenging to settle the problem whether LTCs can have both linear rate

and distance. The current best construction comes from a PCP and

its rate is inverse poly-logarithmic [B-SS08, Din07]. High dimensional

expanders naturally yield locally testable codes, whose parameters are

unfortunately sub-optimal.

Property testing: The central paradigm in property testing is the

interplay between local views of an object and its global properties.

The object can be a codeword, an NP-proof, or simply a graph. This

theory generalizes both PCPs and LTCs and has significant practical

applications. It was an unexpected discovery that high dimensional ex-

panders (and especially the cohomological/coboundary expanders men-

tioned above) fit very naturally into this theory [KL14]. Specifically,

theorems about high dimensional expanders readily translate to results

on property testing.
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Quantum computation and quantum error correcting codes:

Sipser and Spielman [SS96] showed how extremely good expander

graphs yield excellent LDPC error-correcting codes. However, the ex-

istence of LDPC quantum error-correcting codes (even inexplicitly) re-

mains a major open problem. Recent work by Guth and Lubotzky

[GuLu14] is a step in this direction, which is related to our topic: Ev-

ery simplicial complex gives a “homological error correcting code” (see

[BM07], [Ze09]) but in general they are of poor quality. High dimen-

sional coboundary expanders are related to local testability of codes

(see [AE15]).

Another basic problem in quantum computation seeks a finite uni-

versal set of quantum gates that can efficiently generate an arbitrary

unitary matrix in U(n) to desired accuracy. This is solved by Kitaev

and Solovay’s classical algorithm, but non-optimally. The generators

of Lubotzky-Phillips-Sarnak’s Ramanujan graphs [LPS86] fare better,

but come with no efficient generative algorithm. Following the break-

through of Ross-Selinger [RS16], the case n = 2 is essentially solved in

a recent work by Sarnak and Parzanchevski [PS17] who came up with

optimal (a.k.a. golden) gates and an explicit generative algorithm based

on Ramanujan graphs. In ongoing work they use higher dimensional

Ramanujan complexes to find such “golden gates” for higher n [PS18].
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